favourable enthalpy contribution, the entropy contribution being small. Only in the case of the [16] aneN₄/3,3,3-tet comparison can the extra stability of the cyclic complex be assigned to a favourable entropy effect.

References

- 1 D. K. Cabbiness and D. W. Margerum, J. Am. Chem. Soc., 91, 6540 (1969).
- 2 A. Anichini, L. Fabbrizzi, P. Paoletti and R. M. Clay, J. Chem. Soc. Dalton, 577 (1978).
- 3 Linear aliphatic tetra-amines of the type $H_2N(CH_2)_1$ -NH- $(CH_2)_mNH(CH_2)_nNH_2$ may be denoted by the symbol l,m,n-tet.

 ΔG° , ΔH° , and ΔS° Changes for the Formation of Thorium(IV)–Oxydiacetate, –Iminodiacetate, and –Thiodiacetate Complexes in Aqueous Solution

P. DI BERNARDO*, A. CASSOL, G. TOMAT, A. BISMONDO

Istituto di Chimica Generale ed Inorganica, Università di Padova and Laboratorio di Chimica e Tecnologia dei Radioelementi del CNR, Padua, Italy

and L. MAGON

Istituto Chimico, Università di Ferrara, Ferrara, Italy

The changes in free energy, enthalpy, and entropy for the formation of thorium(IV)-oxydiacetate, --iminodiacetate, and --thioacetate complexes have been determined at 25.0 °C using aqueous 1.00 mol dm^{-3} Na[ClO₄] as ionic medium. The changes in free energy were computed from the stability constants determined by the potentiometric determination of the competitive H^+ ion concentration; the enthalpy changes by direct calorimetric titrations. Owing to the high stability of the first thorium(IV)-oxydiacetate complex it was not possible to determine his $\beta_{1,0,1}$ value by potentiometric measurements; from the calorimetric data, however, a $\log\beta_{1,0,1}$ value of about 7 could be inferred.

Thorium(IV) forms only chelate complexes with the oxydiacetate, while with the imino- and thio-diacetate ligands also mixed complexes were detected.

All the complexes are entropically stabilized, in fact the enthalpy changes, except in the second step of the thorium(IV)-oxydiacetate system, oppose to their formation (see Table I).

The basicity of the etheroatom in the ligand chain strongly affects the stability of the corresponding 1:1 metal-ligand complex: the stability increases on increasing the ligand basicity. Finally, it is remarkable the abrupt variation in the enthalpy and entropy values for the formation of the third thorium(IV)oxydiacetate complex; such a trend, previously observed in the thorium(IV)-acetate system [1], may be ascribed to a probable coordination change around the metal ion.

References

1 R. Portanova, P. Di Bernardo, O. Traverso, G. A. Mazzocchin and L. Magon, J. Inorg. Nucl. Chem., 37, 2177 (1975).

TABLE I. The Stepwise Stability Constants and the Corresponding ΔG° , ΔH° , and ΔS° Changes obtained at 25.0 °C and in 1.00 mol dm⁻³ Na[ClO₄] Medium.

Reaction	1	logK	$-\Delta G^{\circ}$ (kJ mol ⁻¹)	$\Delta H^{\circ} (\text{kJ mol}^{-1})$	ΔS° (J mol ⁻¹ K ⁻¹)
Th(IV)-	oxydiacetate				
M + L	≓ ML	≈7	≈40	8.5 ± 0.1	≈160
ML+L	≓ ML ₂	6.36 ± 0.09	36.3 ± 0.5	-12.1 ± 0.2	81
$ML_2 + L$	\neq ML ₃	3.17 ± 0.04	18.1 ± 0.2	35.2 ± 0.2	179
Th(IV)⊣	iminodiacetate				
M + L	≠ ML	9.69 ± 0.01	55.3 ± 0.2	6.5 ± 0.3	207
M + HL	∠ MHL	2.91 ± 0.01	16.6 ± 0.1	7.4 ± 0.2	80
Th(IV)-	Thiodiacetate				
M + L	≓ ML	5.60 ± 0.01	32.0 ± 0.2	20.5 ± 0.4	176
M + HL	∠ MHL	3.79 ± 0.05	18.8 ± 0.2	12.4 ± 0.4	105
ML + L	\neq ML ₂	4.25 ± 0.06	24.2 ± 0.4	14.8 ± 0.6	131